Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Copyright Information and Alteration of Content

2015 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is protected under the copyright laws of the United States, and all rights are reserved. Further, the ANSI/NETA MTS may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the 2015 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems provided 2015 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is clearly identified in writing as the source of all such uses or reproductions.

2015 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems may be reproduced and used in whole or in part for the purpose of creating project specifications, basis of design documentation, maintenance plans, or other similar uses that purport to require compliance with the contents of this document.

The following sections of the 2015 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems must be incorporated by reference as part of any subsection:

3. Qualifications
4. Division of Responsibility
5. General

The user of this document is required to include the above sections with any other section(s) reproduced from this document.

© Copyright 2015
InterNational Electrical Testing Association
3050 Old Centre Ave., Suite 102
Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
E-mail: neta@netaworld.org • Web: www.netaworld.org
Standards Review Council

The following persons were members of the NETA Standards Review Council which approved this document.

Timothy J. Cotter
Lorne Gara
Roderic L. Hageman
David Huffman
Ralph Patterson
Alan D. Peterson
Jayne Tanz
Ron Widup

Maintenance Testing Specifications Ballot Pool Members

The following persons were members of the Ballot Pool which balloted on this document for submission to the NETA Standards Review Council.

Ken Bassett
Tom Bishop
Scott Blizard
Brian Borst
Michael Bowers
John Cadick
Michel Castonguay
Tim Crnko
David Geary
Paul Hartman

John Hauck
Kerry Heid
Andrew Kobler
Korey Kruse
Ben Lanz
Mark Lautenschlager
Finley Ledbetter, III
Jerry Parnell
Lee Perry
Tony Perry
Mose Ramieh

Randall Sagan
Mark Siira
Jeremy Smith
Richard Sobhraj
Alan Turpen
Wally Vahlstrom
Vicki Warren
Chris Werstiuck
John White
Jean-Pierre Wolff
NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.
FOREWORD

(The Foreword is not part of American National Standard ANSI/NETA MTS-2015)

The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA’s scope of standards activity is different from that of IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers’ documents where applicable. NETA’s review and updating of presently published standards takes into account both national and international standards. NETA’s standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA’s ballot pools and reviewing committees.

In 2005, this document was approved for the first time as an American National Standard. It was published as a revised American National Standard in 2011. The 2015 Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is the most current revision of this document, and was approved as a revised American National Standard on December 3, 2014.

The ANSI/NETA Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems was developed for use by those responsible for the continued operation of existing electrical systems and equipment to guide them in specifying and performing the necessary tests to ensure that these systems and apparatus perform satisfactorily, minimizing downtime, and maximizing life expectancy. This document aids in ensuring safe, reliable operation of existing electrical power systems and equipment. Maintenance testing can identify potential problem areas before they become major problems requiring expensive and time-consuming solutions.
PREFACE

(This Preface is not part of American National Standard ANSI/NETA MTS-2015)

It is recognized by the Association that the needs for maintenance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

Notation of Changes
Material included in this edition of the document but not part of the previous edition is marked with a black vertical line to the left of the insertion of text, deletion of text, or alteration of text.

Document Structure
The document is divided into thirteen separate and defined sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>General Scope</td>
</tr>
<tr>
<td>Section 2</td>
<td>Applicable References</td>
</tr>
<tr>
<td>Section 3</td>
<td>Qualifications of Testing Organization and Personnel</td>
</tr>
<tr>
<td>Section 4</td>
<td>Division of Responsibility</td>
</tr>
<tr>
<td>Section 5</td>
<td>General</td>
</tr>
<tr>
<td>Section 6</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>Section 7</td>
<td>Inspection and Test Procedures</td>
</tr>
<tr>
<td>Section 8</td>
<td>System Function Test</td>
</tr>
<tr>
<td>Section 9</td>
<td>Thermographic Survey</td>
</tr>
<tr>
<td>Section 10</td>
<td>Electromagnetic Field Survey</td>
</tr>
<tr>
<td>Section 11</td>
<td>Corona Studies - RESERVED</td>
</tr>
<tr>
<td>Tables</td>
<td>Reference Tables</td>
</tr>
<tr>
<td>Appendices</td>
<td>Various Informational Documents</td>
</tr>
</tbody>
</table>

Section 7 Structure
Section 7 is the main body of the document with specific information on what to do relative to the inspection and maintenance testing of electrical power equipment and systems. It is not intended that this document explain how to test specific pieces of equipment or systems.

Expected Test Results
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, four main bodies of information:

A. Visual and Mechanical Inspection
B. Electrical Tests
C. Test Values – Visual and Mechanical
D. Test Values – Electrical
PREFACE (continued)

Results of Visual and Mechanical Inspections
Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section C. Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.A.7.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.C.2, the expected results for that particular task are listed within Section C, with reference back to the original task description on item 7.1.A.7.2.

7. INSPECTION AND TEST PROCEDURES

7.1 Switchgear and Switchboard Assemblies

A. Visual and Mechanical Inspection

1. Inspect physical, electrical, and mechanical condition including evidence of moisture or corrosion.
2. Inspect mechanical alignment, grounding, and required area clearances.
3. Prior to cleaning the unit, perform as-found tests, if required.
4. Close the unit.
5. Verify that fuse and/or circuit breaker sizes and types correspond to drawings and coordination study as well as to the circuit breaker’s address for microprocessor communication packages.
6. Verify that current and voltage transformer ratios correspond to drawings.
7. Inspect bolted electrical connections for high resistance using one or more of the following methods:
 1. Use of a low-resistance ohmmeter in accordance with Section 7.1.B.1.
 2. Verify tightness of accessible bolted electrical connections by calibrated torque wrench method in accordance with manufacturer’s published data or Table 100:12.
 3. Perform a thermographic survey in accordance with Section 9.
8. Confirm correct operation and sequencing of electrical and mechanical interlock systems:
 2. Make key exchange with all devices included in the interlock scheme as applicable.
 9. Use appropriate lubrication on moving, current-carrying parts and on moving and sliding surfaces.
10. Verify current barrier and shunt installation and operation.
11. Examine all voltmeter components.
12. Inspect mechanical indicating devices for correct operation.
13. Verify that filters are in place and/or vents are clear.
14. Perform visual and mechanical inspection of instrument transformers in accordance with Section 7.10.

*Optional

7. INSPECTION AND TEST PROCEDURES (continued)

7.1 Switchgear and Switchboard Assemblies

2. Verify correct function of control transfer relays located in switchgear with multiple power sources.
10. Perform system function tests in accordance with Section 8.

C. Test Values – Visual and Mechanical

1. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. (7.1.A.7.3)
2. Bolt torque levels should be in accordance with manufacturer’s published data. In the absence of manufacturer’s published data, see Table 100:12. (7.1.A.7.2)
3. Results of the thermographic survey shall be in accordance with Section 9. (7.1.A.7.1)

D. Test Values – Electrical

1. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value.
2. Insulation-resistance values of bus insulation should be in accordance with manufacturer’s published data. In the absence of manufacturer’s published data, see Table 100.1. Values of insulation-resistance less than these values are considered to have failed the test.
3. If no evidence of distress or insulation failure is observed by observation of the test, the test dielectric withstand voltage specimen is considered to have passed the test.
4. Minimum insulation-resistance values of control wiring should be comparable to previously obtained results but not less than two times minimums.
5. Results of electrical tests on instrument transformers should be in accordance with Section 6.
6. Results of ground resistance tests should be in accordance with Section 7.13.
7. Accuracy of meters should be in accordance with Section 7.11.

*Optional
Results of Electrical Tests

Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.B.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.
Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

1. Does another listed test provide similar information?
2. How does the cost of the test compare to the cost of other tests providing similar information?
3. How commonplace is the test procedure? Is it new technology?

If/When Applicable

The phrases "if applicable", "when applicable", and any variation thereof do not occur in this standard. This standard assumes that if devices or pieces of equipment are not present, they will not be subject to testing or verification.

Manufacturer’s Instruction Manuals

It is important to follow the recommendations contained in the manufacturer’s published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary

The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test data, including manufacturer’s published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.

Standards Review Council

InterNational Electrical Testing Association

Timothy J. Cotter
Lorne Gara
Roderic L. Hageman
Dave Huffman
Ralph Patterson
Alan D. Peterson
Jayne Tanz
Ron Widup

ANSI/NEMA MTS-2015
CONTENTS

1. GENERAL SCOPE 1
2. APPLICABLE REFERENCES .. 2
3. QUALIFICATIONS OF TESTING PERSONNEL ... 11
4. DIVISION OF RESPONSIBILITY.. 12
5. GENERAL.. 13
 5.1 Safety and Precautions.. 13
 5.2 Suitability of Test Equipment ... 13
 5.3 Test Instrument Calibration .. 14
 5.4 Test Report.. 15
6. POWER SYSTEM STUDIES .. 16
 6.1 Short-Circuit Studies... 16
 6.2 Coordination Studies... 17
 6.3 Arc-Flash Hazard Analysis... 19
 6.4 Load-Flow Studies .. 21
 6.5 Stability Studies .. 22
 6.6 Harmonic-Analysis Studies .. 23
7. INSPECTION AND TEST PROCEDURES.. 24
 7.1 Switchgear and Switchboard Assemblies ... 24
 7.2.1.1 Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small 28
 7.2.1.2 Transformers, Dry-Type, Air-Cooled, Large... 30
 7.2.2 Transformers, Liquid-Filled.. 34
 7.3.1 Cables, Low-Voltage, Low-Energy – Reserved ... 38
 7.3.2 Cables, Low-Voltage, 600-Volt Maximum .. 39
 7.3.3 Cables, Medium- and High-Voltage .. 41
 7.4 Metal-Enclosed Busways... 44
 7.5.1.1 Switches, Air, Low-Voltage ... 46
 7.5.1.2 Switches, Air, Medium-Voltage, Metal-Enclosed ... 49
 7.5.1.3 Switches, Air, Medium- and High-Voltage, Open ... 52
 7.5.2 Switches, Oil, Medium-Voltage ... 55
 7.5.3 Switches, Vacuum, Medium-Voltage ... 58
 7.5.4 Switches, SF6, Medium-Voltage .. 61
 7.5.5 Switches, Cutouts... 64
 7.6.1.1 Circuit Breakers, Air, Insulated-Case/Molded-Case .. 66
 7.6.1.2 Circuit Breakers, Air, Low-Voltage Power ... 69
 7.6.1.3 Circuit Breakers, Air, Medium-Voltage ... 73
 7.6.2 Circuit Breakers, Oil, Medium- and High-Voltage .. 77
 7.6.3 Circuit Breakers, Vacuum, Medium-Voltage ... 82
 7.6.4 Circuit Breakers, SF6 .. 86
 7.7 Circuit Switchers.. 90
 7.8 Network Protectors, 600-Volt Class .. 93
 7.9.1 Protective Relays, Electromechanical and Solid-State ... 97
 7.9.2 Protective Relays, Microprocessor-Based .. 105
 7.10.1 Instrument Transformers, Current Transformers ... 108
 7.10.2 Instrument Transformers, Voltage Transformers .. 111
 7.10.3 Instrument Transformers, Coupling-Capacitor Voltage Transformers 114
 7.11.1 Metering Devices, Electromechanical and Solid-State 117
CONTENTS (continued)

TABLES (Continued)

100.4 Insulating Fluid Limits
 100.4.1 Suggested Limits for Class I Insulating Oil, Mineral Oil 215
 100.4.2 Suggested Limits for Less-Flammable Hydrocarbon Insulating Liquid 216
 100.4.3 Suggested Limits for Service-Aged Silicone Insulating Liquid 217
 100.4.4 Suggested Limits for Service-Aged Tetrachloroethylene Insulating Fluid 217

100.5 Transformer Insulation Resistance, Maintenance Testing 218

100.6 Cables, Maintenance Test Values
 100.6.1 Medium-Voltage Cables, Maintenance Test Values, DC Test Voltages 219
 100.6.2 Field Test Voltages for Laminated Dielectric, Shielded Power Cable Systems Rated 5,000 Volts and Above with High DC Voltage 220

 100.6.3 Very Low Frequency Testing Levels for Medium-Voltage Cable
 0.1 Hz Test Voltage (rms) .. 221

100.7 Molded-Case Circuit Breakers, Inverse Time Trip Test 222

100.8 Instrument Transformer Dielectric Tests, Field Maintenance 224

100.9 Bolt-Torque Values for Electrical Connections, US Standard Fasteners
 100.12.1 Heat-Treated Steel – Cadmium or Zinc Plated ... 227
 100.12.2 Silicon Bronze Fasteners, Torque (Pound-Feet) 227
 100.12.3 Aluminum Alloy Fasteners, Torque (Pound-Feet) 228
 100.12.4 Stainless Steel Fasteners, Torque (Pound-Feet) 228

100.13 SF6 Gas Tests ... 229

100.14 Insulation Resistance Conversion Factors
 100.14.1 Insulation Resistance Conversion Factors (20° C) 230
 100.14.2 Insulation Resistance Conversion Factors (40° C) 231

100.15 Rated Control Voltages and Their Ranges for Circuit Breakers
 100.20.1 Rated Control Voltages and Their Ranges for Circuit Breakers 237
 100.20.2 Rated Control Voltages and Their Ranges for Circuit Breakers,
 Solenoid-Operated Devices .. 239

100.21 Accuracy of IEC Class TP Current Transformers, Error Limit 240

100.22 Minimum Radii for Power Cable .. 241

APPENDICES

 Appendix A – Definitions .. 243
 Appendix B – Frequency of Maintenance Tests ... 245
 Appendix C – About the InterNational Electrical Testing Association 249
 Appendix D – Form for Comments .. 251
 Appendix E – Form for Proposals .. 252

ANSI/NETA MTS-2015
1. GENERAL SCOPE

1.1 Maintenance Testing Specifications

1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for continued service and reliability of electrical power distribution equipment and systems.

2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational, are within applicable standards and manufacturer’s tolerances, and are suitable for continued service.

3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety problems associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications

All inspections and field tests shall be in accordance with the latest edition of the following codes, standards, and specifications except as provided otherwise herein.

1. American National Standards Institute – ANSI

2. ASTM International – ASTM

 - ASTM D 92
 Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester

 - ASTM D 445
 Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity)

 - ASTM D 664
 Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration

 - ASTM D 877
 Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids using Disk Electrodes

 - ASTM D 923
 Standard Practices for Sampling Electrical Insulating Liquids

 - ASTM D 924
 Standard Test Method for Dissipation Factor (or Power Factor) and Relative Permittivity (Dielectric Constant) of Electrical Insulating Liquids

 - ASTM D 971
 Standard Test Method for Interfacial Tension of Oil against Water by the Ring Method

 - ASTM D 974
 Standard Test Method for Acid and Base Number by Color-Indicator Titration

 - ASTM D 1298
 Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method

 - ASTM D 1500

 - ASTM D 1524
 Standard Test Method for Visual Examination of Used Electrical Insulating Oils of Petroleum Origin in the Field
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

ASTM D 1533 Standard Test Methods for Water in Insulating Liquids by Coulometric Karl Fischer Titration

ASTM D 2029 Standard Test Methods for Water Vapor Content of Electrical Insulating Gases by Measurement of Dew Point

ASTM D 2129 Standard Test Method for Color of Clear Electrical Insulating Liquids (Platinum-Cobalt Scale)

ASTM D 2284 Standard Test Method of Acidity of Sulfur Hexafluoride

ASTM D 2285 Standard Test Method for Interfacial Tension of Electrical Insulating Oils of Petroleum Origin against Water by the Drop-Weight Method

ASTM D 2477 Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Insulating Gases at Commercial Power Frequencies

ASTM D 2759 Standard Practice for Sampling Gas from a Transformer under Positive Pressure

ASTM D 3612 Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography

ASTM D 3613 Standard Practice for Sampling Electrical Insulating Oils for Gas Analysis and Determination of Water Content

3. Association of Edison Illuminating Companies – AEIC

4. Canadian Standards Association – CSA
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

5. Electrical Apparatus Service Association – EASA
 ANSI/EASA AR100 Recommended Practice for the Repair of Rotating Electrical Apparatus

6. Institute of Electrical and Electronic Engineers – IEEE
 ANSI/IEEE C37 Guides and Standards for Circuit Breakers, Switchgear, Relays, Substations, and Fuses
 ANSI/IEEE C57 Distribution, Power, and Regulating Transformers
 ANSI/IEEE C62 Surge Protection
 ANSI/IEEE 43 IEEE Recommended Practice for Testing Insulation Resistance of Rotating Machinery
 ANSI/IEEE 48 IEEE Standard Test Procedures and Requirements for Alternating-Current Cable Terminations 2.5 kV through 765 kV
 ANSI/IEEE 81.2 IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems
 ANSI/IEEE 95 IEEE Recommended Practice for Insulation Testing of Large AC Rotating Machinery with High Direct Voltage
 IEEE 100 The Authoritative Dictionary of IEEE Standards Terms
 IEEE 141 IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants (Red Book)
 ANSI/IEEE 142 IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems (Green Book)
 ANSI/IEEE 241 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings (Gray Book)
 ANSI/IEEE 242 IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (Buff Book)
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/IEEE 399</td>
<td>IEEE Recommended Practice for Power Systems Analysis (Brown Book)</td>
</tr>
<tr>
<td>IEEE 400</td>
<td>IEEE Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems</td>
</tr>
<tr>
<td>ANSI/IEEE 421.3</td>
<td>IEEE Standard for High-Potential-Test Requirements for Excitation Systems for Synchronous Machines</td>
</tr>
<tr>
<td>ANSI/IEEE 446</td>
<td>IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications (Orange Book)</td>
</tr>
<tr>
<td>ANSI/IEEE 450</td>
<td>IEEE Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications</td>
</tr>
<tr>
<td>ANSI/IEEE 493</td>
<td>IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems (Gold Book)</td>
</tr>
<tr>
<td>ANSI/IEEE 519</td>
<td>IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems</td>
</tr>
<tr>
<td>ANSI/IEEE 602</td>
<td>IEEE Recommended Practice for Electric Systems in Health Care Facilities (White Book)</td>
</tr>
<tr>
<td>ANSI/IEEE 637</td>
<td>IEEE Guide for the Reclamation of Insulating Oil and Criteria for Its Use</td>
</tr>
<tr>
<td>IEEE 644</td>
<td>Procedures for Measurement of Power Frequency Electric and Magnetic Fields from AC Power Lines</td>
</tr>
<tr>
<td>ANSI/IEEE 739</td>
<td>IEEE Recommended Practice for Energy Management in Commercial and Industrial Facilities (Bronze Book)</td>
</tr>
<tr>
<td>IEEE 1015</td>
<td>IEEE Recommended Practice for Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems (Blue Book)</td>
</tr>
<tr>
<td>IEEE 1100</td>
<td>IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment (Emerald Book)</td>
</tr>
<tr>
<td>ANSI/IEEE 1106</td>
<td>IEEE Recommended Practice for Maintenance, Testing, and Replacement of Nickel-Cadmium Batteries for Stationary Applications</td>
</tr>
</tbody>
</table>
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

ANSI/IEEE 1159 \textit{IEEE Recommended Practice on Monitoring Electrical Power Quality}

ANSI/IEEE 1188 \textit{IEEE Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) Batteries for Stationary Applications}

IEEE 1584 \textit{IEEE Guide for Performing Arc-Flash Hazard Calculations}

IEEE 1584a \textit{IEEE Guide for Performing Arc-Flash Hazard Calculations – Amendment 1}

7. Insulated Cable Engineers Association – ICEA

ANSI/ICEA S-93-639/NEMA WC 74 \textit{5-46 kV Shielded Power Cable for Use in the Transmission and Distribution of Electric Energy}

ANSI/ICEA S-94-649 \textit{Standard for Concentric Neutral Cables Rated 5,000 – 46,000 Volts}

ANSI/ICEA S-97-682 \textit{Standard for Utility Shielded Power Cables Rated 5,000 – 46,000 Volts}

8. InterNational Electrical Testing Association – NETA

ANSI/NETA ETT \textit{Standard for Certification of Electrical Testing Technicians}

| ANSI/NETA ATS \textit{Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems}|
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

 NEMA AB4 Guidelines for Inspection and Preventive Maintenance of Molded-Case Circuit Breakers Used in Commercial and Industrial Applications

 ANSI/NEMA C84.1 Electrical Power Systems and Equipment Voltage Ratings (60 Hz)

 NEMA MG1 Motors and Generators

 ANSI/NFPA 70 National Electrical Code

 ANSI/NFPA 70B Recommended Practice for Electrical Equipment Maintenance

 ANSI/NFPA 70E Standard for Electrical Safety in the Workplace

 ANSI/NFPA 99 Standard for Healthcare Facilities

 ANSI/NFPA 110 Emergency and Standby Power Systems

 ANSI/NFPA 780 Installation of Lightning Protection Systems

11. Occupational Safety and Health Administration – OSHA

12. State and local codes and ordinances

13. Underwriters Laboratories, Inc. – UL
2. APPLICABLE REFERENCES

2.2 Other Publications

Manufacturer’s instruction manuals for the equipment to be tested.

A Stitch in Time...The Complete Guide to Electrical Insulation Testing, Megger.

Instruction Book PC – 2000 for Wecosol™ Fluid-Filled Primary and Secondary Unit Substation Transformer, ABB Power T&D.

2.3 Contact Information

ABB Power T&D
Small Transformer Division
PO Box 920
South Boston, VA 24592
(434) 572-5695
www.abb.com

American National Standards Institute – ANSI
25 West 43rd Street 4th Fl.
New York, NY 10036
(212) 642-4900
www.ansi.org

ASTM International – ASTM
100 Barr Harbor Drive
W. Conshohocken, PA 19428
(610) 832-9585
www.astm.org

Association of Edison Illuminating Companies – AEIC
600 N. 18th Street; PO Box 2641
Birmingham, AL 35291
(205) 257-2530
www.aeic.org

Canadian Standards Association – CSA
178 Rexdale Boulevard
Toronto, ON M9W 1R3
(416) 747-4000
www.csa.ca
2. APPLICABLE REFERENCES

2.3 Contact Information (continued)

Electrical Apparatus Service Association – EASA
1331 Baur Boulevard
St. Louis, MO 63132
(314) 993-2220
www.easa.com

Institute of Electrical and Electronic Engineers – IEEE
PO Box 1331
Piscataway, NJ 08855
(732) 981-0060
www.ieee.org

Insulated Cable Engineers Association – ICEA
c/o Global Document Engineers
15 Inverness Way East
Englewood, CO 80112
(303) 397-7956
www.icea.net

International Electrotechnical Commission – IEC
Contact through American National Standards Institute

InterNational Electrical Testing Association – NETA
3050 Old Centre Ave. Suite 102
Portage, MI 49024
(269) 488-6382 or (888) 300-NETA (6382)
www.netaworld.org

The McGraw-Hill Companies
P.O. Box 182604
Columbus, OH 43272
(877) 833-5524
www.mcgraw-hill.com

Megger
4271 Bronze Way
Dallas, TX 75237
(214) 723-2861
www.megger.com

National Electrical Manufacturers Association – NEMA
1300 N. 17th St. Suite 1847
Rosslyn, VA 22209
(703) 841-3200
www.nema.org
2. **APPLICABLE REFERENCES**

2.3 **Contact Information (continued)**

- National Institute of Standards and Technology
 100 Bureau Drive
 Gaithersburg, SD 20899
 (301) 975-6478
 www.nist.gov

- National Fire Prevention Association – NFPA
 1 Battery March Park
 PO Box 901
 Quincy, MA 02269-9101
 (617) 984-7247
 www.nfpa.org

- Occupational Safety and Health Administration – OSHA
 U.S. Department of Labor
 Occupational Safety and Health Administration
 Office of Public Affairs – Room N3647
 200 Constitution Avenue
 Washington, D.C. 20210
 (202) 693-1999
 www.osha.gov

- Square D Company, Anderson Product Division
 P.O. Box 455
 Leeds, AL 35094
 (205) 699-2411
 www.schneider-electric.com

- Taylor and Francis Books, Inc. – CRC Press
 2000 NW Corporate Blvd.
 Boca Raton, FL 33431
 (561) 361-6000
 www.crcpress.com

- Underwriters Laboratories, Inc. – UL
 333 Pfingsten Road
 Northbrook, IL 60062
 (847) 272-8800
 www.ul.com