Condensation in Switchgear and Anticondensation Heaters

Condensation, or dew, occurs when the temperature of still air falls to the point the air can no longer hold the water vapor suspended in it as a gas. The resultant liquid combines with dust and other contaminants. When condensation occurs in switchgear, there are very few surfaces where the result is not detrimental. When deposited on the surface of an insulator, the semiconductive film results in a “shorting out” of a portion of the creep path. The reduction in impedance of the insulators allows an increase in leakage current and results in tracking.

In addition to the problems with this semiconductive film, the moisture can also be absorbed by many types of insulators. This is not as great a problem as it once was due to improved insulating products and finishing techniques. It is still considered a best-practice to seal all raw edges of insulators with an antitrack sealer to minimize moisture absorption.

Condensation occurs when warm, moist, still air comes in contact with a cold surface. The cold surface chills the air to below the dew point with condensation as the result. To control the condensate problem, a common approach is to maintain an elevated temperature relative to the ambient. Typically, condensation is considered a problem only if the internal relative humidity is 65 percent or greater. Experience has found that raising the internal temperature by 10°C alleviates the problem. The 10°C temperature increase assures air movement and, in most cases, prevents the switchgear from approaching the dew point.

Outdoor, thermally noninsulated equipment is most susceptible to condensation. When the outside panel of the equipment is exposed to colder air, the chilled panels may cause moisture to condense on the interior surfaces. Several design considerations are relevant for minimizing this condensation possibility:

- To control the entrance of moist air, ventilation should be used only when necessary to keep the temperature rise below the acceptable design limits.
- Space heaters are used to raise the temperature in the enclosure by supplementing the heating naturally present in energized equipment. The induced eddy-current heating in the steel panels of the switchgear caused by the current flow and the resistive heating resulting from the impedance of the current path combine to create heat inside the enclosure.
- The heating created by load currents will be adequate as long as there is a significant current flowing. A 500-ampere load current flowing through a vertical section of 1200-amperes-rated equipment will result in an internal temperature rise of 11°C, but a current flow of only 200 amperes results in a temperature rise of less than 2°C. Space heaters must be used to maintain dew point control.
- Special care must be used in cable compartments with outdoor ventilation, vapor barriers in bus duct, and for outdoor switchgear. In all of these cases, the internal temperature close to the sheet metal is greatly influenced by changes in external temperature.
What Are Dew Point and Relative Humidity?

The warmer the air, the more water vapor it can hold. Dew point is a measure of how much water vapor is actually in the air. Relative humidity is a measure of the amount of water in the air compared with the amount of water the air could hold at the measurement temperature. To see how this works, use the chart below, which is adapted from Meteorology Today by C. Donald Ahrens, published by West Publishing.

<table>
<thead>
<tr>
<th>Air Temperature in °C</th>
<th>Water Vapor Air Can Hold at This Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 degrees</td>
<td>30 grams per cubic meter of air</td>
</tr>
<tr>
<td>20 degrees</td>
<td>17 grams per cubic meter of air</td>
</tr>
<tr>
<td>10 degrees</td>
<td>9 grams per cubic meter of air</td>
</tr>
</tbody>
</table>

These numbers, which apply to air at sea level pressure, are based on measurements over the years. They are basic physical facts.

Now, let’s see how dew point and relative humidity work. Imagine that at 3:00 pm you measure the air temperature at 30°C, and you measure its humidity at nine grams per cubic meter of air. What would happen if this air cooled to 10°C with no water vapor being added or taken away? As it cools to 10°C, the air becomes saturated; that is, it cannot hold more water vapor than nine grams per cubic meter. Cool the air even a tiny bit more, and its water vapor begins condensing to form dew. Back at 3:00 pm when the measurements were taken, we could say that the air’s dew point was 10°C; that is, if this particular air were cooled to 10°C at ground level, its humidity would begin condensing to form dew.

How about relative humidity? At 3:00 pm the air has nine grams of water vapor per cubic meter of air. We divide nine by 30 and multiply by 100 to get a relative humidity of 30 percent. The air actually had 30 percent of the water vapor it could hold at its current temperature. Cool the air to 20°C. Now we divide nine grams of water vapor (the vapor actually in the air) by 17 (the amount of vapor it could hold at its new temperature) and multiply by 100 to get a relative humidity of approximately 53 percent. Finally, when the air cools to 10°C, we divide nine by nine and multiply by 100 to get a relative humidity of 100 percent. The air now has as much vapor as it can hold at its new temperature.

Equipment Recommendations

What does all this mean to switchgear designs? At Powell, we recommend the following guidelines for minimizing the possibility of condensation:

- Installation of two 125-watt space heaters in each of the cable and the circuit breaker compartments for:
 - 27-kV and 38-kV indoor switchgear
 - 5-kV and 15-kV outdoor switchgear
 - 15-kV indoor switchgear with current transformer ratios of 200:5 and smaller, mounted on the insulation spouts (to compensate for lack of heat and air flow due to low operating current, the lower associated eddy–current, and the conductor resistance heating effects)
- Installation of one 125-watt space heater in each of the cable and circuit breaker compartments for indoor 5-kV and 15-kV switchgear
- Thermostatic control to be included on all space heater circuits with the heaters set to turn off at 60°C +/- 5°C
- A second set of space heaters be added to that already recommended and set for operation at 10°C +/- 5°C for applications operating for extended periods in climates below 0°C
- Installation of space heaters within two feet of the outdoor side of any bus duct vapor barrier to prevent condensation when the bus duct is not energized
- Epoxy or porcelain standoff insulators for outdoor equipment due to the low water absorption nature of the material
- Clients specify an ammeter in each space heater circuit to monitor circuit health and, if a smart substation is purchased, include transducers to monitor each space heater circuit
- The use of enclosures designed to minimize the chance of condensation falling or dripping onto current-carrying parts.

Jim Bowen graduated from Texas A&M University in 1976 with a BSEE. He has worked for SIP Engineering as a power engineer and for Exxon in all facets of electrical engineering in the petrochemical process. He held the position of regional engineer for Exxon Chemicals Europe for three years. In January of 1997, Jim joined Powell Electrical Manufacturing Company as Technical Director, providing leadership, training, and mentoring to both internal and external electrical communities.