American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Copyright Information and Alteration of Content

2013 ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems (ANSI/NETA ATS-2013) is protected under the copyright laws of the United States, and all rights are reserved. Further, the ANSI/NETA ATS-2013 may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the ANSI/NETA ATS-2013 provided ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems are clearly identified in writing as the source of all such uses or reproductions.

Section 7 of the ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems may be reproduced and used on a “cut and paste” basis for the particular type of equipment to be tested.

The following sections of the ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems must be incorporated by reference as part of any subsection:

3. Qualifications of Testing Organization and Personnel
 3.1 Testing Organization
 3.2 Testing Personnel
4. Division of Responsibility
 4.1 The Owner’s Representative
 4.2 The Testing Organization
5. General
 5.1 Safety and Precautions
 5.2 Suitability of Test Equipment
 5.3 Test Instrument Calibration
 5.4 Test Report

The purchaser is required to include the above sections with any section(s) of 7.

© Copyright 2013
InterNational Electrical Testing Association
3050 Old Centre Avenue, Suite 102
Portage, MI 49024
E-mail: neta@netaworld.org • Web: www.netaworld.org
Standards Review Council

These specifications were submitted for public comment and reviewed by the NETA Standards Review Council.

Charles K. Blizard, Sr.
Timothy J. Cotter
Diane W. Hageman
Roderic L. Hageman
David Huffman
Ralph Patterson
Alan D. Peterson
Jayne Tanz
Ron Widup

Ballot Pool Members
for

Ken Basset
Tom Bishop
Scott Blizard
Michael Bowers
John Cadick
Michel Castonguay
Ernie Creech
Tim Crnko
Thomas Domitrovich
Lorne Gara
David Geary
Don Genutis
Paul Hartman
Kerry Heid
Andrew Kobler
Korey Kruse

Benjamin Lanz
Mark Lautenschlager
Jerry Parnell
Lee Perry
Tony Perry
Mose Ramieh
Randall Sagan
Peter Sammy

Richard Sobhraj
Tim Thomas
Alan Turpen
Wally Vahlstrom
Chris Werstiuk
John White
JP Wolff

NETA
ANSI/NETA ATS-2013
NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.

InterNational Electrical Testing Association
3050 Old Centre Avenue, Suite 102 • Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
Email: neta@netaworld.org • Web: www.netaworld.org
Jayne Tanz, CMP - Executive Director
FOREWORD

(This Foreword is not part of American National Standard ANSI/NETA ATS-2013)

The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA developed specifications for the acceptance of new electrical apparatus prior to energization and for the maintenance of existing apparatus to determine its suitability to remain in service. The first NETA Acceptance Testing Specifications for Electrical Power Equipment and Systems was produced in 1972. Upon completion of this project, the NETA Technical Committee began work on a maintenance document, and Maintenance Testing Specifications for Electrical Power Equipment and Systems was published in 1975.

NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA's scope of standards activity is different from that of the IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers’ documents where applicable. NETA's review and updating of presently published standards takes into account both national and international standards. NETA’s standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA's Section Panels and reviewing committees.

The NETA Acceptance TestingSpecifications was developed for use by those responsible for assessing the suitability for initial energization of electrical power equipment and systems and to specify field tests and inspections that ensure these systems and apparatus perform satisfactorily, minimizing downtime and maximizing life expectancy.

Since 1972, several revisions of the Acceptance Testing Specifications have been published; in 1989 the NETA Technical Committee, with approval of the Board of Directors, set a four-year review and revision schedule. Unless it involves a significant safety or urgent technical issue, each comment and suggestion for change is held until the appropriate review period. Each edition includes new and completely revised sections. The document uses the standard numbering system of ANSI and IEEE. Since 1989, revised editions of the Acceptance Testing Specifications have been published in 1991, 1995, 1999, 2003, 2007, and 2009.

Suggestions for improvement of this standard are welcome. They should be sent to the InterNational Electrical Testing Association, 3050 Old Centre Avenue, Suite 102, Portage, MI 49024.
PREFACE

It is recognized by the Association that the needs for acceptance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

Notation of Changes
Material included in this edition of the document but not part of the 2009 edition is marked with a black vertical line to the left of the insertion of text, deletion of text, or alteration of text.

The Document Structure
The document is divided into twelve separate and defined sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>General Scope</td>
</tr>
<tr>
<td>Section 2</td>
<td>Applicable References</td>
</tr>
<tr>
<td>Section 3</td>
<td>Qualifications of Testing Organization and Personnel</td>
</tr>
<tr>
<td>Section 4</td>
<td>Division of Responsibility</td>
</tr>
<tr>
<td>Section 5</td>
<td>General</td>
</tr>
<tr>
<td>Section 6</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>Section 7</td>
<td>Inspection and Test Procedures</td>
</tr>
<tr>
<td>Section 8</td>
<td>System Function Test</td>
</tr>
<tr>
<td>Section 9</td>
<td>Thermographic Survey</td>
</tr>
<tr>
<td>Section 10</td>
<td>Electromagnetic Field Testing</td>
</tr>
<tr>
<td>Tables</td>
<td>Reference Tables</td>
</tr>
<tr>
<td>Appendices</td>
<td>Various Informational Documents</td>
</tr>
</tbody>
</table>

Section 7 Structure
Section 7 is the main body of the document with specific information on what to do relative to the inspection and acceptance testing of electrical power distribution equipment and systems. It is not intended that this document list how to test specific pieces of equipment or systems.

Expected Test Results
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, three main bodies of information:

1. Visual and Mechanical Inspection
2. Electrical Tests
3. Test Values
Results of Visual and Mechanical Inspections

Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section 3.1 Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.1.8.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.3.1.2, the expected results for that particular task are listed within Section 3.1, with reference back to the original task description on item 7.1.1.8.2.
Results of Electrical Tests
Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.2.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.

7. Inspection and Test Procedures

7.15.1 Rotating Machinery, AC Induction Motors and Generators

Visual and Mechanical Inspection

1. Compare equipment nameplate data with drawings and specifications.
2. Inspect equipment physical and mechanical condition.
3. Inspect anchorage, alignment, and grounding.
4. Inspect air baffles, filter media, cooling fans, slip rings, brushes, and brush rigging.
5. Inspect bolted electrical connections for high resistance using one or more of the following methods:
 1. Use of low-resistance ohmmeter in accordance with Section 7.15.1.2.
 2. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer’s published data or Table 100.12.
 3. Perform thermographic survey in accordance with Section 9.
6. Perform special tests such as air-gap spacing and machine alignment.
7. Manually rotate the rotor and check for problems with the bearings or shaft.
8. Rotate the shaft and measure and record the shaft extension runout.
9. Verify the application of appropriate lubrication and lubrication systems.
10. Verify that resistance temperature detector (RTD) circuits conform to drawings.

Electrical Tests – AC Induction

1. Perform resistance measurements through bolted connections with a low-resistance ohmmeter, in accordance with Section 7.15.1.1.
 1. Machines larger than 200 horsepower (150 kilowatts):
 - Test duration shall be ten minutes. Calculate polarization index.
 2. Machines 200 horsepower (150 kilowatts) and less:
 - Test duration shall be one minute. Calculate dielectric-absorption ratio for 60/30 second periods.
 3. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric withstand test, the test specimen is considered to have passed the test.
 4. Investigate phase-to-phase stator resistance values that deviate by more than five percent.
 5. Power-factor or dissipation-factor values shall be compared to manufacturer’s published data. In the absence of manufacturer’s published data, these values will be compared with previous values of similar machines.
 6. Tip-up values shall indicate no significant increase in power factor.

* Optional
Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

1. Does another listed test provide similar information?
2. How does the cost of the test compare to the cost of other tests providing similar information?
3. How commonplace is the test procedure? Is it new technology?

Manufacturer’s Instruction Manuals

It is important to follow the recommendations contained in the manufacturer’s published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary

The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test and calibration data, including manufacturer’s published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.
CONTENTS

1. GENERAL SCOPE 1

2. APPLICABLE REFERENCES
 2.1 Codes, Standards and Specifications ... 2
 2.2 Other Publications.. 8
 2.3 Contact Information ... 8

3. QUALIFICATIONS OF TESTING ORGANIZATION AND PERSONNEL
 3.1 Testing Organization... 11
 3.2 Testing Personnel... 11

4. DIVISION OF RESPONSIBILITY
 4.1 The Owner’s Representative .. 12
 4.2 The Testing Organization ... 12

5. GENERAL
 5.1 Safety and Precautions ... 13
 5.2 Suitability of Test Equipment .. 13
 5.3 Test Instrument Calibration ... 14
 5.4 Test Report... 15
 5.5 Test Decal 16

6. POWER SYSTEM STUDIES
 6.1 Short-Circuit Studies.. 17
 6.2 Coordination Studies.. 18
 6.3 Arc-Flash Hazard Analysis ... 19
 6.4 Load Flow Studies .. 21
 6.5 Stability Studies ... 22
 6.6 Harmonic-Analysis Studies ... 23

7. INSPECTION AND TEST PROCEDURES
 7.1 Switchgear and Switchboard Assemblies ... 24
 7.2.1.1 Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small 29
 7.2.1.2 Transformers, Dry-Type, Air-Cooled, Large ... 31
 7.2.2 Transformers, Liquid-Filled ... 34
 7.3.1 Cables, Low-Voltage, Low-Energy - Reserved ... 38
 7.3.2 Cables, Low-Voltage, 600-Volt Maximum ... 39
 7.3.3 Cables, Medium- and High-Voltage ... 41
 7.4 Metal-Enclosed Busways ... 44
 7.5.1.1 Switches, Air, Low-Voltage .. 46
 7.5.1.2 Switches, Air, Medium-Voltage, Metal-Enclosed ... 48
 7.5.1.3 Switches, Air, Medium- and High-Voltage, Open .. 51
 7.5.2 Switches, Oil, Medium-Voltage .. 54
 7.5.3 Switches, Vacuum, Medium-Voltage .. 57
 7.5.4 Switches, SF6, Medium-Voltage .. 60
 7.5.5 Switches, Cutouts .. . 63
 7.6.1.1 Circuit Breakers, Air, Insulated-Case/Molded-Case ... 65
 7.6.1.2 Circuit Breakers, Low-Voltage Power ... 68
 7.6.1.3 Circuit Breakers, Air, Medium-Voltage ... 72
 7.6.2 Circuit Breakers, Oil, Medium- and High-Voltage ... 76
 7.6.3 Circuit Breakers, Vacuum, Medium-Voltage ... 81
 7.6.4 Circuit Breakers, SF6 ... 85
 7.7 Circuit Switchers .. 89
CONTENTS

7.8 Network Protectors, 600-Volt Class ... 92
7.9.1 Protective Relays, Electromechanical and Solid-State 95
7.9.2 Protective Relays, Microprocessor-Based .. 102
7.10 Instrument Transformers ... 104
7.11.1 Metering Devices ... 109
7.11.2 Metering Devices, Microprocessor-Based 110
7.12.1.1 Regulating Apparatus, Voltage, Step Voltage Regulators 112
7.12.1.2 Regulating Apparatus, Voltage, Induction Regulators – Withdrawn 116
7.12.2 Regulating Apparatus, Current - Reserved 117
7.12.3 Regulating Apparatus, Load Tap-Changers 118
7.13 Grounding Systems .. 121
7.14 Ground-Fault Protection Systems, Low-Voltage 123
7.15.1 Rotating Machinery, AC Induction Motors and Generators 126
7.15.2 Rotating Machinery, Synchronous Motors and Generators 130
7.15.3 Rotating Machinery, DC Motors and Generators 136
7.16.1.1 Motor Control, Motor Starters, Low-Voltage 139
7.16.1.2 Motor Control, Motor Starters, Medium-Voltage 141
7.16.2.1 Motor Control, Motor Control Centers, Low-Voltage 145
7.16.2.2 Motor Control, Motor Control Centers, Medium-Voltage 146
7.17 Adjustable Speed Drive Systems ... 147
7.18.1.1 Direct-Current Systems, Batteries, Flooded Lead-Acid 150
7.18.1.2 Direct-Current Systems, Batteries, Vented Nickel-Cadmium 153
7.18.1.3 Direct-Current Systems, Batteries, Valve-Regulated Lead-Acid 156
7.18.2 Direct-Current Systems, Chargers ... 158
7.18.3 Direct-Current Systems, Rectifiers - Reserved 160
7.19.1 Surge Arresters, Low-Voltage ... 161
7.19.2 Surge Arresters, Medium- and High-Voltage 163
7.20.1 Capacitors and Reactors, Capacitors .. 165
7.20.2 Capacitors and Reactors, Capacitor Control Devices - Reserved 167
7.20.3.1 Capacitors and Reactors, Reactors, Shunt and Current-Limiting, Dry-Type 168
7.20.3.2 Capacitors and Reactors, Reactors, Shunt and Current-Limiting, Liquid-Filled 170
7.21 Outdoor Bus Structures .. 174
7.22.1 Emergency Systems, Engine Generator .. 176
7.22.2 Emergency Systems, Uninterruptible Power Systems 178
7.22.3 Emergency Systems, Automatic Transfer Switches 181
7.23 Communications - Reserved ... 184
7.24.1 Automatic Circuit Reclosers and Line Sectionalizers,.................. 185
7.24.2 Automatic Circuit Reclosers and Line Sectionalizers,.................. 189
7.25 Fiber-Optic Cables ... 192
8. SYSTEM FUNCTION TESTS .. 193
9. THERMOGRAPHIC SURVEY .. 194
10. ELECTROMAGNETIC FIELD TESTING ... 195
11. CORONA STUDIES - Reserved ... 197
TABLES
100.1 Insulation Resistance Test Values, Electrical Apparatus and Systems, Other Than Rotating Machinery ... 200
100.2 Switchgear Withstand Test Voltages .. 201
100.3 Recommended Dissipation Factor/Power Factor at 20° C; Liquid-Filled Transformers, Regulators, and Reactors, Acceptance Test Values .. 202
100.4 Insulating Fluid Limits
100.4.1 Test Limits for New Insulating Oil Received in New Equipment ... 203
100.4.2 Test Limits for Silicone Insulating Liquid in New Transformers .. 203
100.4.3 Typical Values for Less-Flammable Hydrocarbon Insulating Liquid .. 204
100.5 Transformer Insulation Resistance, Acceptance Testing .. 205
100.6 Medium-Voltage Cables, Acceptance Test Values
100.6.1 DC Test Voltages ... 206
100.6.2 AC Test Voltages ... 207
100.6.3 Partial Discharge Requirements .. 208
100.6.4 Very Low Frequency Testing Levels .. 208
100.7 Inverse Time Trip Test at 300% of Rated Continuous Current, Molded-Case Circuit Breakers .. 209
100.8 Instantaneous Trip Tolerances for Field Testing of Circuit Breakers .. 210
100.9 Instrument Transformer Dielectric Tests, Field Acceptance .. 211
100.10 Maximum Allowable Vibration Amplitude .. 212
100.11 Insulation Resistance Test Values, Rotating Machinery, for One Minute at 40° C .. 213
100.12 US Standard Fasteners, Bolt Torque Values for Electrical Connections
100.12.1 Heat-Treated Steel - Cadmium or Zinc Plated .. 214
100.12.2 Silicon Bronze Fasteners .. 215
100.12.3 Aluminum Alloy Fasteners .. 215
100.12.4 Stainless Steel Fasteners .. 216
100.13 SF6 Gas Tests .. 217
100.14 Insulation Resistance Conversion Factors
100.14.1 Test Temperatures to 20° C .. 218
100.14.2 Test Temperatures to 40° C .. 219
100.15 High-Potential Test Voltage, Automatic Circuit Reclosers .. 220
100.16 High-Potential Test Voltage for Acceptance Test of Line Sectionalizers .. 221
100.17 Dielectric Withstand Test Voltages, Metal-Enclosed Bus .. 222
100.18 Thermographic Survey, Suggested Actions Based on Temperature Rise .. 223
100.19 Dielectric Withstand Test Voltages, Electrical Apparatus Other than Inductive Equipment .. 224
100.20 Rated Control Voltages and their Ranges for Circuit Breakers
100.20.1 Circuit Breakers .. 225
100.20.2 Solenoid-Operated Devices .. 226
100.21 Accuracy of IEC Class TP Current Transformers Error Limit .. 227
100.22 Minimum Radii for Power Cable, Single & Multiple Conductor Cables with Interlocked Armor, Smooth or Corrugated Aluminum Sheath or Lead Sheath .. 228
APPENDICES
Appendix A - Definitions... 231
Appendix B - Reserved... 233
Appendix C - About the InterNational Electrical Testing Association ... 234
Appendix D - Form for Comments.. 236
Appendix E - Form for Proposals.. 237
1. GENERAL SCOPE

1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for initial energization and final acceptance of electrical power equipment and systems.

2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational, are within applicable standards and manufacturer's tolerances, and are installed in accordance with design specifications.

3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety issues associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications

All inspections and field tests shall be in accordance with the latest edition of the following codes, standards, and specifications except as provided otherwise herein.

1. American National Standards Institute – ANSI

2. ASTM International - ASTM

- ASTM D92: Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
- ASTM D664: Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration
- ASTM D924: Standard Test Method for Dissipation Factor (or Power Factor) and Relative Permittivity (Dielectric Constant) of Electrical Insulating Liquids
- ASTM D971: Standard Test Method for Interfacial Tension of Oil against Water by the Ring Method
- ASTM D974: Standard Test Method for Acid and Base Number by Color-Indicator Titration
- ASTM D1298: Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

ASTM D2029 Standard Test Methods for Water Vapor Content of Electrical Insulating Gases by Measurement of Dew Point

ASTM D2129 Standard Test Method for Color of Clear Electrical Insulating Liquids (Platinum-Cobalt Scale)

ASTM D2284 Standard Test Method of Acidity of Sulfur Hexafluoride

ASTM D2285 Standard Test Method for Interfacial Tension of Electrical Insulating Oils of Petroleum Origin against Water by the Drop-Weight Method

ASTM D2477 Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Insulating Gases at Commercial Power Frequencies

ASTM D2759 Standard Practice for Sampling Gas from a Transformer under Positive Pressure

ASTM D3612 Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography

ASTM D3613 Standard Practice for Sampling Electrical Insulating Oils for Gas Analysis and Determination of Water Content

3. Association of Edison Illuminating Companies - AEIC

4. Canadian Standards Association - CSA

5. Electrical Apparatus Service Association - EASA

 ANSI/EASA AR100 Recommended Practice for the Repair of Rotating Electrical Apparatus
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

6. Institute of Electrical and Electronic Engineers - IEEE

- ANSI/IEEE C2
 National Electrical Safety Code

- ANSI/IEEE C37
 Guides and Standards for Circuit Breakers, Switchgear, Relays, Substations, and Fuses

- ANSI/IEEE C57
 Distribution, Power, and Regulating Transformers

- ANSI/IEEE C62
 Surge Protection

- ANSI/IEEE C93.1
 Requirements for Power-Line Carrier Coupling Capacitors and Coupling Capacitor Voltage Transformers (CCVT)

- ANSI/IEEE 43
 IEEE Recommended Practice for Testing Insulation Resistance of Rotating Machinery

- ANSI/IEEE 48
 IEEE Standard Test Procedures and Requirements for Alternating-Current Cable Terminations 2.5 kV through 765 kV

- IEEE 81

- ANSI/IEEE 81.2
 IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems

- ANSI/IEEE 95
 IEEE Recommended Practice for Insulation Testing of Large AC Rotating Machinery with High Direct Voltage

- IEEE 100
 The Authoritative Dictionary of IEEE Standards Terms

- IEEE 141
 IEEE Recommended Practice for Electrical Power Distribution for Industrial Plants (IEEE Red Book)

- ANSI/IEEE 142
 IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems (IEEE Green Book)

- ANSI/IEEE 241
 IEEE Recommended Practice for Electric Power Systems in Commercial Buildings (Gray Book)

- ANSI/IEEE 242
 IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (Buff Book)
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

- ANSI/IEEE 450: IEEE Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications
- ANSI/IEEE 519: IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems
- IEEE 644: Procedures for Measurement of Power Frequency Electric and Magnetic Fields from AC Power Lines
- ANSI/IEEE 739: IEEE Recommended Practice for Energy Management in Commercial and Industrial Facilities (Bronze Book)
- IEEE 1015: IEEE Recommended Practice for Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems (Blue Book)
- IEEE 1100: IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment (Emerald Book)
2. APPLICABLE REFERENCES

2.1 Codes, Standards, and Specifications (continued)

ANSI/IEEE 1106 IEEE Recommended Practice for Maintenance, Testing, and Replacement of Nickel-Cadmium Batteries for Stationary Applications

ANSI/IEEE 1159 IEEE Recommended Practice on Monitoring Electrical Power Quality

ANSI/IEEE 1188 IEEE Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) Batteries for Stationary Applications

IEEE 1584 IEEE Guide for Arc-Flash Hazard Calculations

7. Insulated Cable Engineers Association – ICEA

ANSI/ICEA S-93-639/NEMA WC 74 5-46 kV Shielded Power Cable for Use in the Transmission and Distribution of Electric Energy

ANSI/ICEA S-94-649 Standard for Concentric Neutral Cables Rated 5,000 - 46,000 Volts

ANSI/ICEA S-97-682 Standard for Utility Shielded Power Cables Rated 5,000 - 46,000 Volts

8. InterNational Electrical Testing Association - NETA

ANSI/NETA ETT Standard for Certification of Electrical Testing Technicians

ANSI/NETA MTS Maintenance Testing Specifications for Electrical Power Equipment and Systems

9. National Electrical Manufacturers Association - NEMA

NEMA AB4 Guidelines for Inspection and Preventive Maintenance of Molded-Case Circuit Breakers Used in Commercial and Industrial Applications

ANSI/NEMA 84.1 Electrical Power Systems and Equipment Voltage Ratings (60 Hz)

NEMA MG1 Motors and Generators

ANSI/NFPA 70 National Electrical Code

ANSI/NFPA 70B Recommended Practice for Electric Equipment Maintenance

ANSI/NFPA 70E Standard for Electrical Safety in the Workplace
2. **APPLICABLE REFERENCES**

2.1 **Codes, Standards, and Specifications (continued)**

<table>
<thead>
<tr>
<th>ANSI/NFPA 99</th>
<th>Health Care Facilities Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/NFPA 110</td>
<td>Emergency and Standby Power Systems</td>
</tr>
<tr>
<td>ANSI/NFPA 111</td>
<td>Standard on Stored Electrical Energy Emergency Systems and Standby Power Systems</td>
</tr>
<tr>
<td>ANSI/NFPA 780</td>
<td>Installation of Lightning Protection Systems</td>
</tr>
</tbody>
</table>

11. Occupational Safety and Health Administration - OSHA

12. State and local codes and ordinances

13. Underwriters Laboratories, Inc. - UL
2. **APPLICABLE REFERENCES**

2.2 **Other Publications**

Manufacturer’s instruction manuals for the equipment to be tested.

Megger, *A Stitch in Time...The Complete Guide to Electrical Insulation Testing*

2.3 **Contact Information**

American National Standards Institute – ANSI
25 West 43rd Street 4th Fl.
New York, NY 10036
(212) 642-4900
www.ansi.org

ASTM International – ASTM
100 Barr Harbor Drive
W. Conshohocken, PA 19428
(610) 832-9585
www.astm.org

Association of Edison Illuminating Companies – AEIC
600 N. 18th Street; PO Box 2641
Birmingham, AL 35291
(205) 257-2530
www.aeic.org

Canadian Standards Association – CSA
178 Rexdale Boulevard
Toronto, ON M9W 1R3
(416) 747-4000
www.csa.ca

Electrical Apparatus Service Association – EASA
1331 Baur Boulevard
St. Louis, MO 63132
(314) 993-2220
www.easa.com

Institute of Electrical and Electronic Engineers – IEEE
PO Box 1331
Piscataway, NJ 08855
(732) 981-0060
www.ieee.org
2. APPLICABLE REFERENCES

2.3 Contact Information (continued)

Insulated Cable Engineers Association – ICEA
c/o Global Document Engineers
15 Inverness Way East
Englewood, CO 80112
(303) 397-7956
www.icea.net

International Electrotechnical Commission – IEC
Contact through American National Standards Institute

InterNational Electrical Testing Association – NETA
3050 Old Centre Avenue, Suite 102
Portage, MI 49024
(269) 488-6382 or (888) 300-NETA (6382)
www.netaworld.org

Marcel Dekker, Inc.
PO Box 5005
Monticello, NY 12701
(800) 228-160
www.dekker.com

The McGraw-Hill Companies
P.O. Box 182604
Columbus, OH 43272
Phone: (877) 833-5524
www.mcgraw-hill.com

Megger
4271 Bronze Way
Dallas, TX 75237
(214) 723-2861
www.megger.com

National Electrical Manufacturers Association– NEMA
1300 N. 17th St. Suite 1847
Rosslyn, VA 22209
(703) 841-3200
www.nema.org

National Fire Protection Association – NFPA
1 Battery March Park
PO Box 901
Quincy, MA 02269-9101
(617) 984-7247
www.nfpa.org
2. APPLICABLE REFERENCES

2.3 Contact Information (continued)

Occupational Safety and Health Administration – OSHA
U.S. Department of Labor
Occupational Safety and Health Administration
Office of Public Affairs - Room N3647
200 Constitution Avenue
Washington, D.C. 20210
(202) 693-1999
www.osha.gov

The Okonite Company
102 Hilltop Road
Ramsey, New Jersey 07446
(201) 825-0300 Fax 201-825-3524
www.okonite.com

Underwriters Laboratories, Inc. – UL
333 Pfingsten Road
Northbrook, IL 60062
(847) 272-8800
www.ul.com